Irregular finite order solutions of complex LDE's in unit disc
نویسندگان
چکیده
It is shown that the order and lower of growth are equal for all non-trivial solutions f(k)+Af=0 if only coefficient A analytic in unit disc log+M(r,A)/log(1−r) tends to a finite limit as r→1−. family concrete examples constructed, where remains same while may vary on certain interval depending irregular coefficient. These coefficients emerge logarithm their modulus approximates smooth radial subharmonic functions prescribed sufficiently large subset disc. result describing phenomenon behind these highly also established. En route results general nature, new sharp logarithmic derivative estimate involving discovered. In addition estimates, arguments used based, particular, Wiman-Valiron theory adapted order, good understanding right-derivative maximum modulus. Nous démontrons que l'ordre et inférieur de croissance sont egaux pour toutes non triviales si seulement le est analytique sur disque unité tend vers une limite finie quand construisons famille des exemples concretes où toujours même, mais croissance, qui contenu dans un intervalle, depend la irrégulière du A. Tels apparaissent logarithme module approximation partie suffisamment grande d'une fonction subharmonique radiale lisse prescrite. aussi résultat nous permet clarifier les propriétés ces triviaux. Avant d'arriver aux résultats généraux avons découvert nouvelle estimation dérivée logarithmique liée à croissance. plus estimations utilisé en particulier théorie Wiman-Valiron, adapté bonne comprehension droite maximum.
منابع مشابه
Growth of Solutions of Higher Order Complex LinearDifferential Equations in anAngular Domain of Unit Disc
We study the growth of solutions of higher order complex differential equations in an angular domain of the unit disc instead of the whole unit disc. Some conditions on coefficient functions, which will guarantee all non-trivial solutions of the higher order differential equations have fast growing, are found in this paper. AMS (2010) Mathematics Subject Classification: 34M10, 30D35
متن کاملComplex oscillation of differential polynomials generated by analytic solutions of differential equations in the unit disc∗
In this paper, we investigate the complex oscillation of differential polynomials generated by solutions of differential equations
متن کاملFixed points of the derivative and k-th power of solutions of complex linear differential equations in the unit disc
In this paper we consider the question of the existence of fixed points of the derivatives of solutions of complex linear differential equations in the unit disc. This work improves some very recent results of T.-B. Cao.
متن کاملGrowth of Solutions of Complex Differential Equations with Coefficients of Finite Iterated Order
In this paper, we investigate the growth of solutions to the differential equation f (k) + Ak−1(z)f (k−1) + · · ·+ A0(z)f = F (z), where the coefficients are of finite iterated order.
متن کاملEntire Functions of Finite Order as Solutions to Certain Complex Linear Differential Equations
When is an entire function of finite order a solution to a complex 2nd order homogeneous linear differential equation with polynomial coefficients? In this paper we will give two (equivalent) answers to this question. The starting point of both answers is the Hadamard product representation of a given entire function of finite order. While the first answer involves certain Stieltjes-like relati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2022
ISSN: ['0021-7824', '1776-3371']
DOI: https://doi.org/10.1016/j.matpur.2022.02.001